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A reduced three-field model of two-dimensional magnetic reconnection in a weakly collisional,
highly magnetized plasma consisting of isothermal electrons and cold ions is derived from a set of
Braginskii-like fluid equations. The model is then used to calculate the linear growth rate of the
reconnecting instability in collisionless and semicollisional parameter regimes. © 2010 American
Institute of Physics. #doi:10.1063/1.3374427$

I. INTRODUCTION

Magnetic reconnection is a fundamental physical phe-
nomenon which occurs in magnetized plasmas found, for
example, in magnetic fusion experiments,1 the solar corona,2

and the Earth’s magnetotail.3 The reconnection process pro-
duces a change in magnetic field-line topology with an ac-
companying release of magnetic energy. Conventional colli-
sional magnetohydrodynamical !MHD" fluid theory is
capable of accounting for magnetic reconnection, but gener-
ally predicts reconnection rates which are many orders of
magnitude smaller than those seen in high temperature
plasmas.4 On the other hand, more sophisticated plasma
models that neglect collisions !since these are comparatively
weak in high temperature plasmas", and treat electrons and
ions as separate fluids, yield much faster reconnection rates
that are fairly consistent with observations.5,6

A simple reduced7 two-fluid model of two-dimensional
collisionless magnetic reconnection in a highly magnetized
plasma consisting of isothermal electrons and cold ions was
derived in Ref. 8. However, there has recently been some
debate in the literature as to whether certain of the terms
!i.e., the so-called density diffusion terms, or, alternatively,
the parallel magnetic field diffusion terms9" appearing in
this model are spurious in nature.10,11 Under certain cir-
cumstances, the terms in question can affect the linear
growth-rate of the reconnecting instability.8–12 The
primary aim of this paper is to resolve any uncertainty in this
regard by rederiving the model in as self-consistent and
rigorous a manner as possible. A secondary aim is to slightly
extend the model to allow the plasma to be weakly
collisional.

II. DERIVATION OF MODEL

A. Introduction

The purpose of this section is to derive a self-consistent
set of reduced fluid equations governing two-dimensional
magnetic reconnection in a highly magnetized, weakly colli-
sional, quasineutral plasma consisting of isothermal elec-
trons and cold !singly charged" ions.

B. Geometry

For the sake of simplicity, we shall work in slab geom-
etry. Let us adopt the standard right-handed Cartesian coor-
dinates, x, y, and z. It is assumed that there is no variation in
quantities in the z-direction: i.e., ! /!z%0. Moreover, the
dominant magnetic field is taken to be uniform, parallel to
the z-axis, and of strength B0.

C. Fundamental equations

Our starting point is a conventional two-fluid treatment
of the plasma dynamics which takes the following form:

!ne

!t
+ " · !neVe" = 0, !1"

mene& !

!t
+ Ve · "'Ve + " · !e

= − Te " ne − ene!E + Ve ! B"

+ ene#"(!Jz − Jz
!0""ez + "!J!$ , !2"

mine& !

!t
+ V · "'V = − Te " ne + J ! B , !3"

where

J = nee!V − Ve" , !4"

and J!=J−Jzez. Here, e is the magnitude of the electron
charge, me is the electron mass, mi is the ion mass, Te is the
!uniform and constant" electron temperature, ne is the elec-
tron number density, Ve is the electron fluid velocity, V is the
center of mass !i.e., ion" fluid velocity, E is the electric field,
B is the magnetic field, J is the electric current density, Jz

!0"ez
is the equilibrium current density, !e is the electron viscosity
tensor, "( is the parallel !to the magnetic field" electrical
resistivity, and "! is the perpendicular resistivity. Of course,
Eqs. !1"–!3" are, respectively, the continuity equation, the
electron fluid equation of motion, and the ion fluid equation
of motion !or, to be more exact, the sum of the electron and
the ion fluid equations of motion". Incidentally, in writing
Eq. !3", we have neglected electron inertia with respect to ion
inertia. Furthermore, the assumption of isothermal electrons
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and cold ions negates the need for an energy equation, and
for cross-terms involving "Te in Eq. !2".

As is well-known, Eqs. !1"–!3" are appropriate to a
highly magnetized electron-ion plasma: i.e., a plasma in
which the electron gyroradius, #e=ve /$e, is much smaller
than the typical variation length-scale, L, of the principal
electron fluid moments, and in which $e%e&1. Here,
ve= !Te /me"1/2 is the electron thermal velocity, $e=eB0 /me
the electron gyrofrequency, and %e the electron-ion
collision time. Now, in a highly magnetized plasma, closed
expressions for "(, "!, and !e can be obtained via a
Chapman–Enskog13 expansion which exploits the smallness
of #e /L and !$e%e"−1. In fact, according to Braginskii,14

"( =0.51me / !nee2%e", "!=me / !nee2%e", plus

!e = !( + !g, !5"

where

" · !( = − "!0.24neTe%e " · Ve" , !6"

and the nonzero elements of !g are 'gxx=−'gyy
= !"4 /2"Wxy, 'gxy ='gyx=−!"4 /4"!Wxx−Wyy", 'gxz='gzx
="4Wyz, and 'gyz='gzy =−"4Wxz. Here, "4=neTe /$e, and
W="Ve+ !"Ve"T− !2 /3"" ·VeI, where I is the identity ten-
sor. Incidentally, in writing Eq. !5", we have neglected the
perpendicular electron viscosity tensor with respect to the
corresponding parallel viscosity tensor, !(, and gyroviscos-
ity tensor, !g. As is well-known, this is a reasonable ap-
proximation in the limit that $e%e&1.14

It turns out that the expression !6" for !minus" the mo-
mentum flux due to parallel electron viscosity is only valid
when the additional constraint L&(e is satisfied, where
(e=ve%e is the electron mean-free-path.14 Assuming that
L)de, where de is the collisionless electron skin-depth !see
Sec. II D", we conclude that Eq. !6" only holds in the rela-
tively narrow collisionality range

1 ) $e%e )
de

#e
. !7"

Note, however, that expression !6" is fairly generic in form,
and can be derived, for instance, from a standard Chew–
Goldberger–Low ansatz.15 Moreover, there is a limit to how
large the viscous momentum flux can become, as %e in-
creases, since electron momentum obviously cannot diffuse
significantly faster than the electron thermal velocity. Such
considerations lead us to replace Eq. !6" with the flux-limited
expression

" · !( = − "& 0.24neTe%e

1 + *!$e%e#e/de
" · Ve' , !8"

where *! is an O!1" positive constant. The above expression
is asymptotically correct in the intermediate collisionality
limit !7", and is, at least, the right order of magnitude in the
low collisionality limit

$e%e &
de

#e
. !9"

Our set of fundamental equations is completed by
Maxwell’s equations: i.e.,

" · B = 0, !10"

" ! E = −
!B
!t

, !11"

" ! B = +0J . !12"

D. Normalized equations

Let us adopt the following normalization scheme:
"̂=de", ! /!t̂= !de /*,eVDe"! /!t, V̂e=Ve /VDe, V̂=V /VDe,
n̂=n /n0, B̂=B /B0, Ê=E / !VDeB0", Ĵ= !+0de /,eB0"J, !̂(,g
=!(,g / !,en0Te", and %̂e= !ne /n0"%e. Note that %̂e only depends
logarithmically on n, and can consequently be treated as a
uniform constant to a good approximation. Here, n0 is the
equilibrium electron number density, and

de = & me

n0e2+0
'1/2

=
#e

*,e

, !13"

VDe =
Te

eB0de
= *,eve, !14"

,e =
+0n0Te

B0
2 , !15"

are the collisionless electron skin-depth, the electron drift-
velocity, and the electron beta, respectively. In essence, our
normalization scheme assumes that the typical variation
length-scale of electron fluid quantities is de, whereas the
typical electron fluid velocity is VDe. Incidentally, the funda-
mental ordering L&#e, which is adopted so as to permit the
use of the standard Braginskii expressions for "(, "!, and
!e, requires that de&#e=*,ede. Obviously, this is only pos-
sible in the low-beta limit *,e)1.

The normalized versions of the equations presented in
Sec. II C are

*,e
!n

!t
+ " · !nVe" = 0, !16"

,e+&*,e
!

!t
+ Ve · "'Ve + n−1 " · !( + n−1 " · !g,

= − " ln n − E − Ve ! B + !$e%e"−1

!#0.51!Jz − Jz
!0""ez + "!J!$ , !17"

+−1,e&*,e
!

!t
+ V · "'V = − " ln n + n−1J ! B , !18"

where

+ =
me

mi
) 1, !19"
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" · !( = − "& 0.24$e%e

1 + *!*,e$e%e

" · Ve' , !20"

J = n!V − Ve" , !21"

" · B = 0, !22"

" ! E = − *,e
!B
!t

, !23"

" ! B = ,eJ , !24"

and any hats on normalized quantities have been omitted
for ease of notation. Furthermore, the nonzero elements
of the normalized gyro viscosity tensor are 'gxx=−'gyy
= !n /2"Wxy, 'gxy ='gyx=−!n /4"!Wxx−Wyy", 'gxz='gzx
=nWyz, and 'gyz='gzy =−nWxz, where W="Ve+ !"Ve"T

− !2 /3"" ·VeI.

E. Ordering assumptions

Let us assume that

*,e ) *+ , !25"

and

$e%e - ,e
−3/2. !26"

In the following, the small quantity *,e is employed as an
expansion parameter.

F. Preliminary analysis

It is consistent with Eq. !22" to write

B = ,e " . ! ez + !1 + ,e
3/2bz"ez, !27"

where ., bz)O!1". Thus, it follows from Eq. !24" that

J = *,e " bz ! ez + Jzez, !28"

where

Jz = − "2. . !29"

It is also consistent with Eqs. !23" and !27" to write

E = − *+ " / − ,e
3/2!.

!t
ez + O!,e

2" , !30"

where /)O!1". Let us represent V in the completely gen-
eral form

V = *+ " 0 ! ez + ,e " 1 + *+,eVzez, !31"

where 0, 1, Vz)O!1". Thus, it follows from Eqs. !21" and
!28" that

Ve = − !*,en
−1 " bz − *+ " 0" ! ez + ,e " 1 + Vezez,

!32"

where

Vez = n−1"2. + *+,eVz. !33"

G. Ion fluid equation of motion

The ion fluid equation of motion, Eq. !18", reduces to

0 = n−1 " !n + *,ebz" + ,e-"&V!
2

2+
' + &,e

+
'1/2

" & !0

!t
'

! ez − "20 " 0 + n−1"2. " ..
+ ,e

3/2-&,e

+
'1/2!Vz

!t
− #0,Vz$ − n−1#bz,.$.ez

+ ,e
3/2&,e

+
'1/2-&,e

+
'1/2

" & !1

!t
' + "20 " 1 ! ez.

+ O!,e
2" , !34"

where #A ,B$%"A!"B ·ez, and use has been made of Eqs.
!27", !28", and !31".

To lowest order in *,e, the above equation yields

n = 1 − *,ebz. !35"

It follows from Eq. !32" that

Ve = *,e " 0e ! ez + ,e " 1 + Vezez, !36"

where

0e = − Z + & +

,e
'1/2

0 , !37"

and

ln n = − *,eZ . !38"

Incidentally, Eqs. !35" and !38" imply that

Z = bz + O!*,e" . !39"

The z-component of Eq. !34" yields the ion equation of
parallel motion,

!Vz

!t
= & +

,e
'1/2

#0,Vz$ + & +

,e
'1/2

#Z,.$ + O!*,e" , !40"

whereas the z-component of its curl gives the ion vorticity
equation,

!"20

!t
= & +

,e
'1/2

#0,"20$ + & +

,e
'1/2

#"2.,.$ + O!*,e" .

!41"

H. Continuity equation

The continuity equation, Eq. !16", reduces to

!Z

!t
= & +

,e
'1/2

#0,Z$ + "21 + O!*,e" , !42"

where use has been made of Eqs. !36"–!38".
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I. Electron fluid equation of motion

The electron fluid equation of motion, Eq. !17", can be
written as

,eF = *+ " !/ + 0" − ,e/n−1"2. " . + "1 ! ez0

+ ,e
3/2- !.

!t
+ #Z,.$ − & +

,e
'1/2

#0,.$

− 2"2!. − .!0"".ez + O!,e
2" , !43"

where

F = &*,e
!

!t
+ Ve · "'Ve + n−1 " · !( + n−1 " · !g, !44"

and 2=0.51!,e
3/2$e%e"−13O!1". Here, use has been made of

Eqs. !27"–!30" and !36"–!39".
Assuming that 1F13O!1" !see Sec. II J", Eq. !43" yields

0 = − / !45"

to lowest order in *,e. Furthermore, the z-component of this
equation gives

Fz = *,e- !.

!t
+ #Z,.$ − & +

,e
'1/2

#0,.$ − 2"2!. − .!0"".
+ O!,e" , !46"

whereas the z-component of its curl reduces to

!" ! F" · ez = − #"2.,.$ + "21 + O!*,e" . !47"

J. Evaluation of F

It is easily demonstrated from Eqs. !36" and !37" that

&*,e
!

!t
+ Ve · "'Ve

=
1
2

" !V!e
2 " + *,e- !"2.

!t
+ #Z,"2.$

− & +

,e
'1/2

#0,"2.$.ez + O!,e" . !48"

Moreover, it follows from Eqs. !20", !26", !36", and !38" that

n−1 " · !( = − **,e " !"21" + O!,e" , !49"

where *=0.24 /*!. Finally, it can be shown that

n−1 " · !g = 1
2
*,e " !"2Z" − *,e#Z,"2.$ez + O!,e" .

!50"

Thus, from Eq. !44",

F = "&1
2

V!e
2 +

1
2
*,e"

2Z − **,e"
21'

+ *,e- !"2.

!t
− & +

,e
'1/2

#0,"2.$.ez + O!,e" . !51"

Note that the two terms involving #Z ,"2.$ in Eqs. !48" and
!50" cancel one another exactly in Eq. !51". This is a mani-
festation of the well-known gyroviscous cancellation.16

Equations !46" and !51" yield the Ohm’s law,

!.e

!t
= & +

,e
'1/2

#0,.e$ − #Z,.$ + 2"2!. − .!0"" + O!*,e" ,

!52"

where

.e = . − "2. . !53"

Finally, Eqs. !42", !47", and !51" reduce to the density evo-
lution equation,

!Z

!t
= & +

,e
'1/2

#0,Z$ + #"2.,.$ + O!*,e" . !54"

K. Discussion

Our final set of reduced equations takes the form

!.e

!t
= & +

,e
'1/2

#0,.e$ − #Z,.$ + 0.51!,e
3/2$e%e"−1"2

!!. − .!0"" + O!*,e" , !55"

!Z

!t
= & +

,e
'1/2

#0,Z$ + #"2.,.$ + O!*,e" , !56"

!"20

!t
= & +

,e
'1/2

#0,"20$ + & +

,e
'1/2

#"2.,.$ + O!*,e" ,

!57"

where .e=.−"2.. We can now relax the somewhat restric-
tive ordering assumption !25", to allow for higher values of
,e, provided that the O!*+ /,e" terms appearing in the above
equations remain significantly larger than the O!*,e" terms
which have been neglected. This implies that Eqs. !55"–!57"
are valid for ,e in the range

,e ) *+ . !58"

Equations !55"–!57" involve three fields: i.e., the mag-
netic flux function, .; the perturbed density /or, alternatively,
the perturbed parallel magnetic field #see Eqs. !38" and
!39"$0, Z; and the ion stream function, 0. There is a fourth
field—namely, the ion parallel velocity, Vz—which is
coupled to these three fields via the equation

!Vz

!t
= & +

,e
'1/2

#0,Vz$ + & +

,e
'1/2

#Z,.$ + O!*,e" , !59"

but does not explicitly appear in Eqs. !55"–!57".
The three-field reduced model !55"–!57" differs in two

important respects from the four-field reduced model derived
in Ref. 8. The first difference is that the parallel ion velocity,
Vz, is decoupled from the other three fields, ., Z, and 0. In
fact, the coupling term is O!*+,e", and it would therefore be
inconsistent to retain it in the model while neglecting other
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much larger O!*,e" terms. The second difference is the ab-
sence of density diffusion terms in Eq. !56". There are two
such terms—the collisionless density diffusion term,
,e"

2!Z /!t, and the collisional density diffusion term,
,e2"2Z— both of which would appear on the right-hand
side of Eq. !56". However, these terms are omitted because
they are O!,e", and it would be inconsistent to include them
while neglecting other much larger O!*,e" terms. It was
erroneously stated in Ref. 10 that the collisionless density
diffusion term is cancelled out when the electron gyro vis-
cosity tensor is included in the analysis. In fact, the cancel-
lation is only partial.11 Thus, the true reason for the omission
of the density diffusion terms is the low-,e ordering used to
derive Eqs. !55"–!57".

In the collisionless limit, $e%e→4, the three-field model
Eqs. !55"–!57" can be shown to conserve energy, as ought to
be the case, since the collisionless model is ultimately deriv-
able from the energy conserving Vlasov equation. In fact, the
!normalized" conserved energy takes the form17

E =
1
22 2 #!"2."2 + 1".12 + Z2 + 1"012$dxdy . !60"

Incidentally, the gyro viscous cancellation, mentioned in
Sec. II J, plays a vital role in ensuring that the collisionless
three-field model is energy conserving. In fact, if the cancel-
lation is neglected then the −#Z ,.$ term on the right-hand
side of Eq. !55" is converted into −#Z ,.e$, and, instead of
dE /dt=0, we obtain

dE
dt

= −2 2 #Z,. − .e$.dxdy . !61"

In other words, if the gyro viscous cancellation is neglected
then the collisionless three-field model is not energy conserv-
ing. This highlights the importance of retaining the electron
gyroviscosity tensor in the electron fluid equation of motion.

III. LINEAR STABILITY ANALYSIS

A. Introduction

As an illustration of its utility, let us employ the three-
field model derived in Sec. II to calculate the linear growth-
rate of the reconnecting instability. In the following, it is
assumed that equilibrium quantities only vary in the
x-direction, that the system is periodic in the y-direction,
with periodicity length Ly, and that the small y-directed re-
connecting magnetic field reverses sign at x=0.

B. Analysis

Let

.!x,y,t" = −
1
2

x2

,eLs
+ .̃!x"ei!ky+5t", !62"

Z!x,y,t" = Z̃!x"ei!ky+5t", !63"

0!x,y,t" = 0̃!x"ei!ky+5t", !64"

where k=26 /Ly, and ˜ denotes a perturbed quantity. !Here,
Ly is normalized with respect to de." Moreover, we are ne-
glecting any equilibrium shear flows, density gradients,
and current gradients, for the sake of simplicity. The expres-
sion for the !normalized" equilibrium magnetic field is
B!0"= !0,x /Ls ,1". Thus, Ls is the shear-length of the recon-
necting magnetic field !normalized with respect to de".

At large-1x1, we expect the plasma to be governed by the
equations of ideal-MHD.18 Moreover, in the limit 1x1→0, the
ideal-MHD solution for a reconnecting instability takes the
standard form

.̃!x" = .̃0+7!
2

1x1 + 1 + O&1
x
', , !65"

where .̃0 is a constant, and 7! is the linear tearing stability
index !normalized to de".

18 The above solution must be as-
ymptotically matched to the solution of the linearized three-
field model at the edge of a narrow reconnecting layer cen-
tered on x=0.

Linearizing Eqs. !55"–!57", and making the long
wavelength ordering k)1, we obtain the following layer
equations:

g+1 − &1 +
8!
g
' d2

dx2,.̃ =
− ix
,eLs

+Z̃ − & +

,e
'1/2

0̃, , !66"

gZ̃ =
ix

,eLs

d2.̃

dx2 , !67"

g
d20̃

dx2 = & +

,e
'1/2 ix

,eLs

d2.̃

dx2 , !68"

where g=5 /k and 8!=0.51!,e
3/2$e%e"−1 /k. It is assumed that

.̃!x" is even in x, while Z̃!x" and 0̃!x" are both odd #which is
consistent with Eq. !65"$.

Suppose that

.̄!p" = 2
−4

4

.̃!x"e−ipxdx , !69"

etc. The above Fourier transform should be understood in the
generalized sense, since .!x" is not square-integrable. The
Fourier transformed layer equations can be combined to give

d

dq
& q2

1 + q2

dY

dq
' − Q2& q2

q2 + (2'Y = 0, !70"

where Q=g,eLs, q= !1+8 /Q"1/2p, 8=8!,eLs, and (
= !+ /,e"1/2!1+8 /Q"1/2, and

dY

dq
9 !1 + q2".̄ . !71"

The boundary conditions on Eq. !70" are that #see Eqs. !65"
and !71"$

042101-5 Magnetic reconnection in weakly collisional… Phys. Plasmas 17, 042101 #2010$

Downloaded 11 Jul 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



Y!q → 0" → Y0+1
q

+
6

7!!1 + 8/Q"1/2 + O!q", , !72"

where Y0 is a constant, and that Y!q→4" be well-behaved.
Assuming that Q, ()1, Eq. !70" can be solved in three

overlapping regions. In the first of these regions, q)()1,
Eq. !70" reduces to

d2F

dq2 − & Q2

q2 + (2'F 3 0, !73"

where F=qY. To zeroth order in Q2, this equation yields

d2F!0"

dq2 3 0. !74"

The solution which satisfies the boundary condition Eq. !72"
is

F!0" = Y0-1 + + 6

7!!1 + 8/Q"1/2,q. . !75"

Moreover, the first-order correction to this solution is written

d2F!1"

dq2 3 & Q2

q2 + (2'F!0". !76"

Now, the above correction is only important at comparatively
high values of the normalized growth-rate, Q. However, high
values of Q correspond to low values of 1 /7! !see Table II".
Hence, we can safely assume that F!0" is dominated by the
first term appearing within the square brackets in Eq. !75"
!the validity of this approximation is easily established
a posteriori", which implies that

d2F!1"

dq2 3 & Q2

q2 + (2'Y0. !77"

Thus, integrating once in q, we obtain

dF!1"

dq
3

Y0Q2

(
tan−1& q

(
' . !78"

In the region ()q)1, this expression yields

dF!1"

dq
3

Y0Q2

(

6

2
. !79"

Integrating once more in q, we get

F!1" 3
Y0Q2

(

6

2
q . !80"

Hence, in the region ()q)1, the solution to Eq. !70" takes
the general form

Y 3 Y0-1
q

+ +Q2

(

6

2
+

6

7!!1 + 8/Q"1/2, + O!q". . !81"

Next, let us examine the region q)1. Here, to lowest
order in Q2, Eq. !70" simplifies to

d

dq
& q2

1 + q2

dY

dq
' 3 0. !82"

Matching the solution of the above equation to expression
!81", in the region ()q)1, we obtain

Y 3 Y0-1
q

+ +Q2

(

6

2
+

6

7!!1 + 8/Q"1/2, − q + O!q2". .

!83"

Let us now consider the region q)Q−1&1. Here, Eq.
!70" reduces to

d2Y

dq2 − Q2Y 3 0. !84"

The solution to the above equation which is well-behaved as
q→4 is

Y = Y1e−Qq, !85"

where Y1 is a constant. Hence, in the region 1)q)Q−1, we
get

Y 3 Y1#1 − Qq + O!q2"$ . !86"

Finally, matching this expression to Eq. !83", in the region
1)q)Q−1, we obtain the dispersion relation

6

7!
=

!1 + 8/Q"1/2

Q
−

6

2
&,e

+
'1/2

Q2. !87"

C. Discussion

The above dispersion relation can be written as19

6

7̂
=

!1 + 8/5̂"1/2

5̂
−

6

2
&,e

+
'1/2

5̂2, !88"

where !in terms of un-normalized quantities"

5̂ =
5Ls

*,e$ekde
2 , !89"

8 =
0.51Ls

*,e$e%ekde
2 , !90"

7̂ = 7!de. !91"

Equation !88" is valid provided Q)1 !which turns out to
always be the case", and ()1, or

!1 + 8/5̂"1/2 ) !,e/+"1/2. !92"

Criterion !92" is equivalent to the constraint that the
collision-broadened width of the current channel in un-
normalized x-space, :e= !1+8 / 5̂"1/2de, be much less than
#s= !,e /+"1/2de, where #s is the ion gyroradius calculated
with the electron temperature. According to the well-known
classification of Drake and Lee,20 this constraint implies that
the above dispersion relation only describes collisionless and
semicollisional reconnection regimes. In fact, assuming that
Eq. !92" is satisfied, a collisionless regime corresponds to
5̂&8, and a semicollisional regime to 5̂)8.

Recall that the three-field model !55"–!57", from
which Eq. !88" was obtained, was itself derived under the
assumption that all significant length-scales greatly exceed
the electron gyroradius, #e=*,ede. Now, the shortest length-
scale in the reconnecting layer is Q−1 in q-space, and
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:0= 5̂!1+8 / 5̂"1/2de in !un-normalized" x-space. Thus, an ad-
ditional criterion for the validity of the dispersion relation
!88" is #e):0, or

5̂!1 + 8/5̂"1/2 & *,e. !93"

Finally, since we have relaxed the strict ordering, Eq.
!25", used to derive the three-field model, it is necessary to
check again that the neglect of the density diffusion terms
remains valid. In fact, it is easily shown that the terms in
question are negligible provided

5̂ & *,e. !94"

Note that in the collisionless limit, 5̂&8, the above con-
straint is identical with the earlier constraint !93". This sug-
gests that the collisionless density diffusion term is negli-
gible throughout the whole of the region of parameter space
in which a Braginskii-like fluid treatment of the electrons is
valid. However, in the semicollisional limit, 5̂&8, the con-
straint !94" is more stringent than the constraint !93". This
suggests the collisional density diffusion term is not negli-
gible through the whole of the region of parameter space in
which a Braginskii-like fluid treatment of the electrons is
valid.

Figure 1 and Table I specify the boundaries in 7̂, 8 space
of the various linear reconnection regimes predicted by the

dispersion relation !88". It can be seen that there are four
distinct regimes, which are labeled I to IV. Note that if 8 is
too large then the constraint !92" ceases to hold. Likewise, if
7̂ becomes too small then the constraint !94" is no longer
satisfied. This accounts for the fact that the reconnection re-
gimes I–IV do not occupy all of 7̂, 8 space. Incidentally, the
dispersion relation !88" is well-known, and was first derived
in Ref. 19. The novel aspect of the derivation presented
above is the determination of the region of 7̂, 8 space over
which Eq. !88" is valid.

Expressions for the normalized growth-rate, 5̂, of the
reconnecting instability in all four of the regimes shown in
Fig. 1 are given in Table II. It can be seen that two of the
regimes, I and IV, are collisionless in nature: i.e., 5̂ is inde-
pendent of the collisionality factor, 8. Actually, in these re-
gimes, there is no collisional broadening of the current chan-
nel, whose width is consequently of order the collisionless
electron skin-depth, de, and the magnetic reconnection is
solely mediated by electron inertia. The other two regimes,
II and III, are semicollisional in nature. This follows because
5̂→0 as 8→0, indicating that the magnetic reconnection is
mediated by plasma resistivity. In these regimes, the current
channel is broadened by collisions, but its width, :e, still
remains less than #s, so that de):e)#s.

For the sake of completeness, the tables and figure also
include a semicollisional reconnection regime, labeled V, in
which the collisional density diffusion term plays an impor-
tant role. The growth-rate in this regime is taken from Eq.
!55" of Ref. 9 !except that we have generalized this expres-
sion to take into account the fact that "(%"!, which is the
origin of the factor 0.511/4 in Table II", and its boundaries in
parameter space are determined by the constraints !92"–!94".
Note that if the strict ordering, Eq. !25", from which the
three-field model was derived, holds then points 2, 3, and 7
in Fig. 1 merge together. This suggests that the appearance of
regime V, which implies a breakdown of our ordering
scheme in the relevant region of parameter space, is a con-
sequence of the relaxation of the strict ordering !25".

The collisionless and semicollisional reconnection re-
gimes specified in Tables I and II, and Fig. 1, are similar to
those described in Refs. 8–12, apart from the absence of a
collisionless low-7! regime in which 597!2. It turns out that
the collisionless density diffusion term, which has been or-
dered out of the density evolution equation !56" !see Sec.
II K", plays an important role in this regime. If the aforemen-

7 I

1

2

4

5

6

II

III

IV

∆̂ →

ε
→

3

V

FIG. 1. Boundaries in 7̂, 8 space of the various linear collisionless/
semicollisional reconnection regimes described in Table II. The coordinates
of the various numbered points are given in Table I.

TABLE I. Coordinates in 7̂, 8 space of the various numbered points appear-
ing in Fig. 1.

No. 7̂ 8

1 ,e
1/2 0

2 ,e
1/2 ,e

1/2

3 +1/2 +−1,e
3/2

4 +1/2,e
−1/2 +−1,e

5 +1/6,e
−1/6 +1/6,e

−1/6

6 +1/6,e
−1/6 0

7 +3/4,e
−1/4 +−1/2,e

TABLE II. Normalized linear growth rate of the reconnecting instability in
the various collisionless/semicollisional reconnection regimes shown in Fig.
1. Here, c=;!1 /4" / #26;!3 /4"$.

Regime 5̂

I 6−17̂

II 6−2/37̂2/381/3

III !2 /6"2/781/7+1/7,e
−1/7

IV !2 /6"1/3+1/6,e
−1/6

V 0.511/4c7̂81/2,e
−1/4
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tioned term was included in Eq. !56", despite this being in-
consistent with our ordering scheme, then the 597!2 regime
would occupy a region in Fig. 1 to the left of regime I and
below regime V. However, in this region of parameter space
the shortest length-scale in the reconnecting layer falls below
the electron gyroradius, #e. Unfortunately, this invalidates
the Braginskii expression for the electron gyro viscosity ten-
sor which was used to derive the three-field model. !Recall
that the gyro viscosity tensor must be included in the analy-
sis, otherwise the collisionless three-field model does not
conserve energy." Hence, we conclude that the 597!2 re-
gime is spurious, at least within the context of a Braginskii-
like fluid treatment of the electron dynamics.

IV. SUMMARY

In Sec. II, we derive a reduced three-field model #Eqs.
!55"–!57"$ of electron-ion plasma dynamics which is suitable
for investigating two-dimensional magnetic reconnection in
a weakly collisional, highly magnetized plasma consisting of
isothermal electrons and cold ions. The starting point for the
derivation is a set of two-fluid equations which are closed by
standard Braginskii expressions for the electron gyro viscos-
ity tensor, and the parallel and perpendicular electrical resis-
tivity. Note that the gyro viscosity tensor must be included in
the analysis so as to ensure that the final model is energy
conserving in the collisionless limit. As is well-known, the
aforementioned Braginskii expressions are obtained from a
Chapman–Enskog expansion which relies on the compara-
tive smallness of the electron gyroradius, #e, compared to the
typical variation length-scale, L, of the principal electron
fluid moments. In other words, the expressions are only valid
in the limit #e)L. Now, for collisionless reconnection,
L)de, where de=#e /*,e is the collisionless electron skin-
depth. Thus, the requirement #e)L)de limits our analysis
to comparatively small values of the electron beta, ,e. In
fact, our derivation of the three-field model is only valid in
the limit ,e)*+, where +=me /mi. The three-field model
does not include the so-called collisionless and collisional
density diffusion terms9 in the density evolution equation
#Eq. !56"$ because these terms are O!,e", and, in the course
of our derivation, we have neglected any terms which are
O!*,e" and smaller. Note that it was erroneously stated in
Ref. 10 that the collisionless density diffusion term is can-
celled out when the electron gyro viscosity tensor is included
in the analysis. Actually, this is not the case.11 The term is, in
fact, always present, but is too small to play a significant role
in the electron dynamics in the region of parameter space in
which a Braginskii-like fluid treatment of the electron dy-
namics is valid.

In Sec. III, we employ the three-field model derived in
Sec. II to calculate the linear growth-rate of the reconnecting
instability in collisionless and semicollisional parameter re-
gimes. Within the context of a Braginskii-like fluid treatment
of the electron dynamics, we find that there is no weakly
growing collisionless regime in which the growth-rate de-
pends quadratically on the tearing stability index. Of course,
this does not preclude the existence of such a regime in re-
gions of parameter space in which Braginskii-like fluid equa-
tions are invalid, and a kinetic treatment of the electron dy-
namics is instead required. However, we note that no such
regime is apparent from the results of the computer simula-
tions recently performed by Rogers et al.21

ACKNOWLEDGMENTS

The author would like to thank R. D. Hazeltine !Univer-
sity of Texas at Austin", F. L. Hinton !Hinton Associates,
Escondido, CA", E. Tassi !Université de Provence, France",
D. Grasso !Politecnico di Torino, Italy", G. Vekstein
!University of Manchester, U.K.", B. N. Rogers !Dartmouth
College", V. V. Mirnov !University of Wisconsin-Madison",
P. J. Catto !MIT", A. N. Simakov !LANL", and R. J. Hastie
!Culham Laboratory, U.K." for helpful discussions during the
preparation of this paper.

1F. L. Waelbroeck, Phys. Fluids B 1, 2372 !1989".
2K. Shibata, Adv. Space Res. 17, 9 !1996".
3V. M. Vasyliunas, Rev. Geophys. Space Phys. 13, 303, doi:10.1029/
RG013i001p00303 !1975".

4D. Biskamp, Phys. Fluids 29, 1520 !1986".
5B. Coppi, Phys. Lett. 11, 226 !1964".
6M. Ottaviani and F. Porcelli, Phys. Rev. Lett. 71, 3802 !1993".
7H. R. Strauss, Phys. Fluids 20, 1354 !1977".
8R. Fitzpatrick and F. Porcelli, Phys. Plasmas 11, 4713 !2004".
9V. V. Mirnov, C. C. Hegna, and S. C. Prager, Phys. Plasmas 11, 4468
!2004".

10R. Fitzpatrick and F. Porcelli, Phys. Plasmas 14, 049902 !2007".
11M. Hosseinpour, N. Bian, and G. Vekstein, Phys. Plasmas 16, 012104

!2009".
12A. Y. Aydemir, Phys. Fluids B 3, 3025 !1991".
13S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform

Gases, 3rd ed. !Cambridge University Press, Cambridge, 1991".
14S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A.

Leontovich !Consultants Bureau, New York, 1965", Vol. 1, p. 205.
15G. L. Chew, M. L. Goldberger, and F. E. Low, Proc. R. Soc. London, Ser.

A 236, 112 !1956".
16R. D. Hazeltine and J. D. Meiss, Phys. Rep. 121, 1 !1985".
17E. Tassi, P. J. Morrison, F. L. Waelbroeck, and D. Grasso, Plasma Phys.

Controlled Fusion 50, 085014 !2008".
18H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 !1963".
19F. Porcelli, Phys. Rev. Lett. 66, 425 !1991".
20J. F. Drake and Y. C. Lee, Phys. Fluids 20, 1341 !1977".
21B. N. Rogers, S. Kobayashi, P. Ricci, W. Dorland, J. Drake, and T.

Tatsuno, Phys. Plasmas 14, 092110 !2007".

042101-8 Richard Fitzpatrick Phys. Plasmas 17, 042101 #2010$

Downloaded 11 Jul 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.2774003
http://dx.doi.org/10.1063/1.859172
http://dx.doi.org/10.1016/0273-1177(95)00534-L
http://dx.doi.org/10.1029/RG013i001p00303
http://dx.doi.org/10.1063/1.865670
http://dx.doi.org/10.1016/0031-9163(64)90419-6
http://dx.doi.org/10.1103/PhysRevLett.71.3802
http://dx.doi.org/10.1063/1.862018
http://dx.doi.org/10.1063/1.1791640
http://dx.doi.org/10.1063/1.1773778
http://dx.doi.org/10.1063/1.2715576
http://dx.doi.org/10.1063/1.3068470
http://dx.doi.org/10.1063/1.859780
http://dx.doi.org/10.1098/rspa.1956.0116
http://dx.doi.org/10.1098/rspa.1956.0116
http://dx.doi.org/10.1016/0370-1573(85)90083-3
http://dx.doi.org/10.1088/0741-3335/50/8/085014
http://dx.doi.org/10.1088/0741-3335/50/8/085014
http://dx.doi.org/10.1063/1.1706761
http://dx.doi.org/10.1103/PhysRevLett.66.425
http://dx.doi.org/10.1063/1.862017



